Moebius Inverses of Plausibility and Commonality Functions and Their Geometric Interpretation
نویسندگان
چکیده
In this work we extend the geometric approach to the theory of evidence in order to study the geometric behavior of the two quantities inherently associated with a belief function. i.e. the plausibility and commonality functions. After introducing the analogous of the basic probability assignment for plausibilities and commonalities, we exploit it to understand the simplicial form of both plausibility and commonality spaces. Given the intuition provided by the binary case we prove the congruence of belief, plausibility, and commonality spaces for both standard and unnormalized belief functions, and describe the point-wise geometry of these sum functions in terms of the rigid transformation mapping them onto each other. This leads us to conjecture that the D-S formalism may be in fact a geometric calculus in the line of geometric probability, and opens the way to a wider application of discrete mathematics to subjective probability.
منابع مشابه
Three alternative combinatorial formulations of the theory of evidence
In this paper we introduce three alternative combinatorial formulations of the theory of evidence (ToE), by proving that both plausibility and commonality functions share the structure of “sum function” with belief functions. We compute their Moebius inverses, which we call basic plausibility and commonality assignments. As these results are achieved in the framework of the geometric approach t...
متن کاملAlternative Formulations of the Theory of Evidence Based on Basic Plausibility and Commonality Assignments
In this paper we introduce indeed two alternative formulations of the theory of evidence by proving that both plausibility and commonality functions share the same combinatorial structure of sum function of belief functions, and computing their Moebius inverses called basic plausibility and commonality assignments. The equivalence of the associated formulations of the ToE is mirrored by the geo...
متن کاملMoebius inverses of plausibility and commonality functions
In this paper we introduce indeed two alternative formulations of the theory of evidence by proving that both plausibility and commonality functions share the same combinatorial structure of sum function of belief functions, and computing their Moebius inverses called basic plausibility and commonality assignments. As they are discovered through geometric methods, the latter inherit the same si...
متن کاملGeometry and Combinatorics of Plausibility and Commonality Functions
In this work we extend the geometric approach to the theory of evidence in order to study the geometric behavior of the two quantities inherently associated with a belief function. i.e. the plausibility and commonality functions. After introducing the analogous of the basic probability assignment for plausibilities and commonalities, we exploit it to understand the simplicial form of both plaus...
متن کاملAn Interpretation of Consistent Belief Functions in Terms of Simplicial Complexes
In this paper we pose the study of consistent belief functions (cs.b.f.s) in the framework of the geometric approach to the theory of evidence. As cs.b.f.s are those belief functions whose plausibility assignment is a possibility distribution, their study is a step towards a unified geometric picture of a wider class of fuzzy measures. We prove that, analogously to consonant belief functions, c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007